Densidad
La densidad puede obtenerse de varias formas. Por ejemplo, para objetos macizos de densidad mayor que el agua, se determina primero su masa en una balanza, y después su volumen; éste se puede calcular a través del cálculo si el objeto tiene forma geométrica, o sumergiéndolo en un recipiente calibrando, con agua, y viendo la diferencia de altura que alcanza el líquido. La densidad es el resultado de dividir la masa por el volumen. Para medir la densidad de líquidos se utiliza el densímetro, que proporciona una lectura directa de la densidad.
El principio de Arquímedes permite determinar la densidad de un objeto cuya forma es tan irregular que su volumen no puede medirse directamente. Si el objeto se pesa primero en aire y luego en agua, la diferencia de peso será igual al peso del volumen de agua desplazado, y este volumen es igual al volumen del objeto, si éste está totalmente sumergido. Así puede determinarse fácilmente la densidad del objeto. Si se requiere una precisión muy elevada, también hay que tener en cuenta el peso del aire desplazado para obtener el volumen y la densidad correctos.
Rango de presiones
Las presiones pueden variar entre 10-8 y 10-2 mm de mercurio de presión absoluta en aplicaciones de alto vacío, hasta miles de atmósferas en prensas y controles hidráulicos. Con fines experimentales se han obtenido presiones del orden de millones de atmósferas, y la fabricación de diamantes artificiales exige presiones de unas 70.000 atmósferas, además de temperaturas próximas a los 3.000 °C.
En la atmósfera, el peso cada vez menor de la columna de aire a medida que aumenta la altitud hace que disminuya la presión atmosférica local. Así, la presión baja desde su valor de 101.325 Pa al nivel del mar hasta unos 2.350 Pa a 10.700 m (altitud de vuelo típica de un reactor).
Por presión parcial se entiende la presión efectiva que ejerce un componente gaseoso determinado en una mezcla de gases. La presión atmosférica total es la suma de las presiones parciales de sus componentes (oxígeno, nitrógeno, dióxido de carbono y gases nobles).
Tensión superficial
Condición existente en la superficie libre de un líquido, semejante a las propiedades de una membrana elástica bajo tensión. La tensión es el resultado de las fuerzas moleculares, que ejercen una atracción no compensada hacia el interior del líquido sobre las moléculas individuales de la superficie; esto se refleja en la considerable curvatura en los bordes donde el líquido está en contacto con la pared del recipiente. Concretamente, la tensión superficial es la fuerza por unidad de longitud de cualquier línea recta de la superficie líquida que las capas superficiales situadas en los lados opuestos de la línea ejercen una sobre otra.
La tendencia de cualquier superficie líquida es hacerse lo más reducida posible como resultado de esta tensión,como ocurre con el mercurio, que forma una bola casi redonda cuando se deposita una cantidad pequeña sobre una superficie horizontal. La forma casi perfectamente esférica de una burbuja de jabón, que se debe a la distribución de la tensión sobre la delgada película de jabón, es otro ejemplo de esta fuerza. La tensión superficial es suficiente para sostener una aguja colocada horizontalmente sobre el agua.
La tensión superficial es importante en condiciones de ingravidez; en los vuelos espaciales, los líquidos no pueden guardarse en recipientes abiertos porque ascienden por las paredes de los recipientes.
Cohesión
La atracción entre moléculas que mantiene unidas las partículas de una sustancia. La cohesión es distinta de la adhesión; la cohesión es la fuerza de atracción entre partículas adyacentes dentro de un mismo cuerpo, mientras que la adhesión es la interacción entre las superficies de distintos cuerpos.
En los gases, la fuerza de cohesión puede observarse en su licuefacción, que tiene lugar al comprimir una serie de moléculas y producirse fuerzas de atracción suficientemente altas para proporcionar una estructura líquida.
En los líquidos, la cohesión se refleja en la tensión superficial, causada por una fuerza no equilibrada hacia el interior del líquido que actúa sobre las moléculas superficiales, y también en la transformación de un líquido en sólido cuando se comprimen las moléculas lo suficiente.
En los sólidos, la cohesión depende de cómo estén distribuidos los átomos, las moléculas y los iones, lo que a su vez depende del estado de equilibrio (o desequilibrio) de las partículas atómicas. Muchos compuestos orgánicos,por ejemplo, forman cristales moleculares, en los que los átomos están fuertemente unidos dentro de las moléculas,pero éstas se encuentran poco unidas entre sí.